Synthetic pathway of 2-fluoro-N,N-diphenylbenzamide with opto-electrical properties: NMR, FT-IR, UV-Vis spectroscopic, and DFT computational studies of the first-order nonlinear optical organic single crystal

Author:

Raveendiran C.1,Prabukanthan P.1,Madhavan J.2,Vivekanand P. A.3,Arumugam Natarajan4,Almansour Abdulrahman I.4,Kumar Raju Suresh4,Alaqeel Shatha Ibrahim5,Perumal Karthikeyan6

Affiliation:

1. Materials Chemistry Lab, Department of Chemistry, Muthurangam Government Arts College , Vellore 632002 , India

2. Solar Energy Lab, Department of Chemistry, Thiruvalluvar University , Vellore , 632 115 , India

3. Centre for Catalysis Research & Department of Chemistry, Saveetha Engineering College , Chennai 602105 , India

4. Department of Chemistry, College of Science, King Saud University , P.O. Box 2455 , Riyadh 11451 , Saudi Arabia

5. Department of Chemistry, College of Science, King Saud University (034) , Riyadh 11495 Saudi Arabia

6. Department of Chemistry and Biochemistry, The Ohio State University , 151W. Woodruff Ave , Columbus , OH 43210 , USA

Abstract

Abstract 2-Fluoro-N,N-diphenylbenzamide (2FNNDPBA), a natural nonlinear optical (NLO) single crystal, was incorporated from diphenylamine utilizing 2-fluoro benzoyl chloride as a side chain. The single crystals were successfully developed by a slothful evaporation arrangement approach utilizing ethyl acetate as a dissolvable solvent at room temperature. The synthesized compound fragmented ion peak (m/z = 291) was affirmed by gas-chromatographic mass spectrometry investigation. The unit cell dimensions were assessed using single-crystal X-ray diffraction analysis, which reveals that the crystals possess the orthorhombic system with space group Pbca. The existence of proton and carbon in a compound was affirmed by 1H and 13C nuclear magnetic resonance. The functional groups therein of 2FNNDPBA have been identified from FT-IR and FT-Raman studies and amide carbonyl stretching frequency peak appeared at 1,662 cm−1. The lower cut-off wavelength of 2FNNDPBA is found to be 240 nm and the experimental and theoretical optical band gap was calculated as 3.21 and 3.1083 eV. The UV-Visible spectrum of 2FNNDPBA shows two high-flying peaks at 240 and 273 nm. Major weight losses were observed between 160°C and 275°C for the designated compound. The thermal property for 2FNNDPBA was estimated by thermogravimetric analysis/differential thermal analysis investigation, which shows immense thermal strength up to 171°C. Density functional theory method with Gaussian 09 software for theoretical investigations of 2FNNDPBA for Mulliken charge analysis, highest occupied molecular orbital–lowest-lying unoccupied molecular orbital, and molecular electrostatic potential properties has been analyzed. The SHG productivity was proved by Kurtz-Perry powder strategy and has an efficiency 2.22 times that of standard potassium dihydrogen phosphate. The laser damage threshold of 2FNNDPBA crystals was discovered to be 1.18 GW·cm−2. The hyperpolarizability simulations further show that the current material has an excellent NLO activity tendency. The melting point of the developed crystal is 158°C.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3