Development and butyrylcholinesterase/monoamine oxidase inhibition potential of PVA-Berberis lycium nanofibers

Author:

Ibrahim Nihal Abdalla12,Kaleem Saba3,Khan Abida Kalsoom3,Murtaza Ghulam4

Affiliation:

1. Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University , Ajman , United Arab Emirates

2. Centre of Medical and Bio-allied Health Sciences Research, Ajman University , Ajman , United Arab Emirates

3. Department of Chemistry, COMSATS University Islamabad, Lahore Campus , Abbottabad , Pakistan

4. Department of Pharmacy, COMSATS University Islamabad, Lahore Campus , Lahore , Pakistan

Abstract

Abstract The aim of this study was to evaluate the potential inhibitory effect of montmorillonite (MMT)-reinforced, glutaraldehyde-crosslinked PVA (polyvinyl alcohol) nanofibers loaded with root extract of Berberis lycium on monoamine oxidase A and B (MAO A and B) and butyrylcholinesterase (BChE) by using slightly modified Ellman’s test and Amplex Red monoamine oxidase assay, respectively. Enzyme inhibition studies of extract-loaded nanofibers showed significant inhibitory potential against MAO A, B, and BChE. There was an increase in enzyme inhibition with an increased extract concentration loaded to nanofibers. The fibers were characterized by TGA (thermal gravimetric analysis), SEM (scanning electron microscopy), XRD (X-ray diffractometry), and FTIR (Fourier-transform infra-red) spectroscopy to investigate thermal stability, morphology, structural changes, and functional groups in the nanofibers, respectively. SEM results of fabricated nanofibers reflected the beadless and smooth morphology of nanofibers with the porous structure. The contact angle measurements of fabricated nanofibers showed suitable hydrophilicity of nanofibers. The nanofibers loaded with the root extract of Berberis lycium have been found to be potent inhibitors of MAO A, B, and the BChE enzyme.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3