The catalytic performance of acid-modified Hβ molecular sieves for environmentally friendly acylation of 2-methylnaphthalene

Author:

Sun Jingjing1,Zhang Nan1,Jin Haibo2,Mao Xuefeng3,He Guangxiang3,Li Junfang3,Yan Zihao1,Hu Fating3,Ma Lei1,Guo Xiaoyan1,Yang Suohe1

Affiliation:

1. Department of Chemical Engineering, School of New Material and Chemical Engineering, Beijing Institute of Petrochemical Technology/Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology , Beijing 102617 , China

2. School of New Material and Chemical Engineering, Beijing Institute of Petrochemical Technology/Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology , Beijing 102617 , China

3. Department of Coal liquefaction, Beijing Research Institute of Coal Chemistry, CCTEG Coal Research Institute , Beijing 100013 , China

Abstract

Abstract 2,6-Methylacylnaphthalene is an important organic chemical raw material, mainly used as a precursor for synthesizing polyethylene 2,6-naphthalene dicarboxylate (PEN). The heterogeneous catalyst molecular sieve catalyzes the acylation of 2-methylnaphthalene to synthesize β,β-methylacylnaphthalene, which has good activity, is green and environmentally friendly, with simple post-treatment. Different molecular sieves and reaction solvents were selected, and Hβ molecular sieves were more suitable for the acylation reaction of 2-methylnaphthalene. The reaction results were better when sulfolane was used as a solvent in this paper. The catalytic performances of citric acid-modified Hβ molecular sieve (SiO2/Al2O3 of 25) and unmodified molecular sieve were investigated and compared. The results showed that modification with low-concentration citric acid increased the amount of mediate strong acid and Bronsted acid, the specific surface area, pore volume, and pore size of Hβ zeolite. When the concentration of citric acid was 0.3 mol·L−1, the modification time was 48 h and the calcination at 550°C for 3 h had the best catalytic activity. By further optimizing the acylation process, the conversion rate of 2-methylnaphthalene increased to 88.82%, and the yield of β,β-methyl propyl naphthalene increased to 82.12%.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3