Synthesis and characterization of noble metal/metal oxide nanoparticles and their potential antidiabetic effect on biochemical parameters and wound healing

Author:

Elobeid Mai A.1,Awad Manal A.2,Virk Promy3,Ortashi Khalid M.4,Merghani Nada M.5,Asiri Atheer M.3,Bashir Emadeldin Abdeljabar Ali6

Affiliation:

1. Department of Zoology, King Saud University, Riyadh, KSA , Riyadh, 11451 , Saudi Arabia

2. King Abdullah Institute for Nanotechnology, King Saud University , Riyadh , Saudi Arabia

3. Department of Zoology, King Saud University , Riyadh , Saudi Arabia

4. Department of Chemical Engineering, King Saud University , Riyadh , Saudi Arabia

5. Researcher/Lab Specialist Central Lab, King Saud University , Riyadh , Saudi Arabia

6. College of Applied Medical Sciences, Department Radiological Sciences , King Saud University , Saudi Arabia

Abstract

Abstract The study assessed the antidiabetic effect of Solenostemma argel and its nanoformulations with silver/gold nanocomposites (CNPs), zinc oxide nanoparticles (ZnONPs), and metaformin drug. Experimental groups consisted of normal control, diabetic control, and four diabetic groups treated with metformin, CNPs, ZnONPs, and bulk argel leaf extract (So-argel). Transmission electron microscopy characterization showed that the synthesized CNPs and ZnONPs were of variable sizes and dimensions and were quasi-spherical in shape. Particle sizes measured by dynamic light scattering were 106 and 139 nm for CNPs and ZnONPs, respectively. Also, the polydispersity index values were 0.473 and 0.269 for CNPs and ZnONPs, respectively. The biochemical parameters were as follows: the group treated with bulk So-argel (105.00 ± 4.041 mg·dL−1) and CNPs (109.00 ± 8.373 mg·dL−1) showed a more profound anti-hyperglycemic effect and were comparable to the control (88.40 ± 2.249). Liver and kidney functions (p ≤ 0.05) improved with So-argel and its nanoformulations compared to metformin. However, bulk argel (170.33 ± 20.431  and 38.00 ± 3.05 U·L−1) and the nanocomposite (228.33 ± 11.464 and 48.00 ± 5.291 U·L−1) were efficacious in lowering serum levels of liver enzymes (AST and ALT, respectively). No significant difference was observed between urea levels. Nevertheless, bulk So-argel (0.26 ± 0.007) and CNPs (0.24 ± 0.018) were more effective than ZnONPs (0.41 ± 0.289) on serum creatinine. Nanotreatment exhibited a reduction in lesions size/healing. Overall, nanoparticles may offer a safe potential for Type 2 diabetes management.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3