A machine learning-driven stochastic simulation of underground sulfide distribution with multiple constraints

Author:

Ji Qiuyan1,Han Feilong12,Qian Wei1,Guo Qing3,Wan Shulin3

Affiliation:

1. Hohai University, School of Earth Sciences and Engineering , Nanjing 211000 , China

2. School of Computer Engineering, Jiangsu University of Technology , Changzhou 213001 , China

3. Department of Physics, Michigan Technological University , Houghton , Michigan 49931 , United States of America

Abstract

Abstract The increase of sulfide (S2−) during the water flooding process has been regarded as an essential and potential risk for oilfield development and safety. Kriging and stochastic simulations are common methods for assessing the element distribution. However, these traditional simulation methods are not able to predict the continuous changes of underground S2− distribution in the time domain by limited known information directly. This study is a kind of attempt to combine stochastic simulation and the modified probabilistic neural network (modified PNN) for simulating short-term changes of S2− concentration. The proposed modified PNN constructs the connection between multiple indirect datasets and S2− concentration at sampling points. These connections, which are treated as indirect data in the stochastic simulation processes, is able to provide extra supports for changing the probability density function (PDF) and enhancing the stability of the simulation. In addition, the simulation process can be controlled by multiple constraints due to which the simulating target has been changed into the increment distribution of S2−. The actual data test provides S2− distributions in an oil field with good continuity and accuracy, which demonstrate the outstanding capability of this novel method.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3