Predicting small water courses’ physico-chemical status from watershed characteristics with two multivariate statistical methods

Author:

Kardos Máté Krisztián1,Clement Adrienne1

Affiliation:

1. Budapest University of Technology and Economics Budapest , Budapest , Hungary

Abstract

Abstract Watershed area and a bunch of relief, land use, and wastewater characteristics for 32 upland and 33 lowland small river courses are generated. Based on these characteristics, logistic binary regression models are trained to predict if the river achieves the good physico-chemical status, and discriminant analysis models are trained to predict the physico-chemical status class on a five-class scale. Univariate models revealed that elevation (for upland rivers), the share of artificial surfaces (for lowland rivers) along with forests, and wastewater quality variables such as biochemical oxygen demand, chemical oxygen demand, and phosphorus are the most significant predictors. Discriminant analysis models performed better on upland than on lowland rivers. Achievement of good status could be predicted with an accuracy of ~90% (with 2 to 4 variable logit models), whereas the status class with an accuracy of 63/48% (with 2 to 4 variable discriminant analysis models) for upland and lowland rivers, respectively. This contribution uses Hungary as a case study.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference54 articles.

1. Congress, U.S., 1972: Federal water pollution control act, 33 U.S.C. 1251 et seq. USA.

2. Directive 2000/60/EC of the European Parliament and of the Council, 2000. European Comission, Bruxelles.

3. Boda, P., Móra, A., Deák, C., Krasznai, E., Csercsa, A., Zagyva, A., & Várbíró, G., 2014: Testing the adequacy of the Hungarian typological system on the watercourses of the Ipoly basin, based on the macroinvertebrate communities. Acta Biologica Debrecina, Suppl. Oecol. Hung., 32, 9–18.

4. Borics, G., Ács, É., Boda, P., Boros, E., Erős, T., Grigorszky, I., Kiss, K.T., & Lengyel, S., 2016: Water bodies in Hungary – an overview of their management and present state. Hungarian Journal of Hydrology, 86, 57–67.

5. Clement, A., Szilágyi, F., & Kardos, M.K., 2015: Classification of surface waters based on physico-chemical characteristics supporting ecology - lessons learned during status assessment and the planning of interventions In: Proceedings of the XXXIII. National Meeting of the Hungarian Hydrological Society (In Hungarian: Felszíni vizek minősítése az ökológiát támogató fizikaikémiai jellemzők szerint - az állapotértékelés tanulságai az intézkedési programok tervezése szempontjából, In: A Magyar Hidrológiai Társaság XXXIII. Vándorgyűlése 1-3 July 2015, Szombathely, Hungary (ed. Szlávik, L., Gampel, T. & Szigeti, E.). Hungarian Hydrological Society, pp 1–11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3