Coupling the K-nearest neighbors and locally weighted linear regression with ensemble Kalman filter for data-driven data assimilation

Author:

Fan Manhong1,Bai Yulong1,Wang Lili1,Tang Lihong1,Ding Lin1

Affiliation:

1. College of Physics and Electrical Engineering, Northwest Normal University , Lanzhou 730070 , China

Abstract

Abstract Machine learning-based data-driven methods are increasingly being used to extract structures and essences from the ever-increasing pool of geoscience-related big data, which are often used in relation to the atmosphere, oceans, and land surfaces. This study focuses on applying a data-driven forecast model to the classical ensemble Kalman filter process to reconstruct, analyze, and elucidate the model. In this study, a nonparametric sampler from a catalog of historical datasets, namely, a nearest neighbor or analog sampler, is given by numerical simulations. Based on this catalog (sampler), the dynamics physics model is reconstructed using the K-nearest neighbors algorithm. The optimal values of the surrogate model are found, and the forecast step is performed using locally weighted linear regression. Several numerical experiments carried out using the Lorenz-63 and Lorenz-96 models demonstrate that the proposed approach performs as good as the ensemble Kalman filter for larger catalog sizes. This approach is restricted to the ensemble Kalman filter form. However, the basic strategy is not restricted to any particular version of the Kalman filter. It is found that this combined approach can outperform the generally used sequential data assimilation approach when the size of the catalog is substantially large.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3