Modeling of Landslide susceptibility in a part of Abay Basin, northwestern Ethiopia

Author:

Wubalem Azemeraw1

Affiliation:

1. Engineering Geologist, College of Natural and Computational Sciences, Department of Geology, University of Gondar , Posta 196 , Gondar , Ethiopia

Abstract

Abstract The study area in northwestern Ethiopia is one of the most landslide-prone regions, which is characterized by frequent high landslide occurrences. To predict future landslide occurrence, preparing a landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties and loss of lives. Geographic information system (GIS)-based frequency ratio (FR), information value (IV), certainty factor (CF), and logistic regression (LR) methods were applied. The landslide inventory map is prepared from historical records and Google Earth imagery interpretation. Thus, 717 landslides were mapped, of which 502 (70%) landslides were used to build landslide susceptibility models, and the remaining 215 (30%) landslides were used to model validation. Eleven factors such as lithology, land use/cover, distance to drainage, distance to lineament, normalized difference vegetation index, drainage density, rainfall, soil type, slope, aspect, and curvature were evaluated and their relationship with landslide occurrence was analyzed using the GIS tool. Then, landslide susceptibility maps of the study area are categorized into very low, low, moderate, high, and very high susceptibility classes. The four models were validated by the area under the curve (AUC) and landslide density. The results for the AUC are 93.9% for the CF model, which is better than 93.2% using IV, 92.7% using the FR model, and 87.9% using the LR model. Moreover, the statistical significance test between the models was performed using LR analysis by SPSS software. The result showed that the LR and CF models have higher statistical significance than the FR and IV methods. Although all statistical models indicated higher prediction accuracy, based on their statistical significance analysis result (Table 5), the LR model is relatively better followed by the CF model for regional land use planning, landslide hazard mitigation, and prevention purposes.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3