An OGC web service geospatial data semantic similarity model for improving geospatial service discovery

Author:

Miao Lizhi12,Liu Chengliang1,Fan Li1,Kwan Mei-Po34

Affiliation:

1. Department of Surveying, Mapping and Geoinformation, College of Geographical and Biological Information, Nanjing University of Posts and Telecommunications , Nanjing , Jiangsu 210023 , China

2. Jiangsu Engineering Laboratory for Smart Analysis of Healthy Big Data and Location Based Services , Nanjing , Jiangsu 210023 , China

3. Department of Geography and Resource Management, and Institute of Space and Earth Information Science, The Chinese University of Hong Kong , Shatin , Hong Kong

4. Department of Human Geography and Spatial Planning, Utrecht University , Utrecht , The Netherlands

Abstract

Abstract Open Geospatial Consortium (OGC) Web Services (OWS) are highly significant for geospatial data sharing and widely used in many scientific fields. However, those services are hard to find and utilize effectively. Focusing on addressing the big challenge of OWS resource discovery, we propose a measurement model that integrates spatiotemporal similarity and thematic similarity based on ontology semantics to generate a more efficient search method: OWS Geospatial Data Semantic Similarity Model (OGDSSM)-based search engine for semantically enabled geospatial data service discovery that takes into account the hierarchy difference of geospatial service documents and the number of map layers. We implemented the proposed OGDSSM-based semantic search algorithm on United States Geological Survey mineral resources geospatial service discovery. The results show that the proposed search method has better performance than the existing search engines that are based on keyword-based matching, such as Lucene, when recall, precision, and F-measure are taken into consideration. Furthermore, the returned results are ranked based on semantic similarity, which makes it easier for users to find the most similar geospatial data services. Our proposed method can thus enhance the performance of geospatial data service discovery for a wide range of geoscience applications.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3