Constructing 3D geological models based on large-scale geological maps

Author:

Wu Xuechao1,Liu Gang123,Weng Zhengping12,Tian Yiping12,Zhang Zhiting12,Li Yang1,Chen Genshen1

Affiliation:

1. School of Computer Science, China University of Geosciences , No. 388 Lumo Road , Wuhan 430074 , China

2. Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences , Wuhan 430074 , China

3. State Key Laboratory of Biogeology and Environmenta Geology, China University of Geosciences , Wuhan 430074 , China

Abstract

Abstract The construction of 3D geological models based on geological maps is a subject worthy of study. The construction of geological interfaces is the key process of 3D geological modeling. It is hard to build the bottom interfaces of quaternary strata only using boundaries in large-scale geological maps. Moreover, it is impossible to construct bedrock geological interfaces through sparse occurrence data in large-scale geological maps. To address the above-mentioned two difficulties, we integrated two key algorithms into a new 3D modeling workflow. The buffer algorithm was used to construct virtual thickness contours of quaternary strata. The Inverse Distance Weighted (IDW) algorithm was applied to occurrence interpolation. Using a regional geological map of a city in southern China, the effectiveness of our workflow was verified. The complex spatial geometry of quaternary bottom interfaces was described in detail through boundaries buffer. The extension trends of bedrock geological interfaces were reasonably constraint by occurrence interpolation. The 3D geological model constructed by our workflow accords with the semantic relationship of tectonics. Through the model, the complex spatial structure of urban shallow strata can be displayed stereoscopically. It can provide auxiliary basis for decision-making of urban underground engineering.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3