Landslide site delineation from geometric signatures derived with the Hilbert–Huang transform for cases in Southern Taiwan

Author:

Yang Shun-Hsing1,Liao Jyh-Jong1,Pan Yi-Wen1,Shih Peter Tian-Yuan1

Affiliation:

1. Department of Civil Engineering, National Chiao Tung University , Hsinchu , Taiwan

Abstract

Abstract Landslides are a frequently occurring threat to human settlements. Along with global climate change, the occurrence of landslides is the forecast to be even more frequent than before. Among numerous factors, topography has been identified as a correlated subject and from which hillslope landslide-prone areas could be analyzed. Geometric signatures, including statistical descriptors, topographic grains, etc., provide an analytical way to quantify terrain. Various published literature, fast Fourier transform, fractals, wavelets, and other mathematical tools were applied for this parameterization. This study adopts the Hilbert–Huang transform (HHT) method to identify the geomorphological features of a landslide from topographic profiles. The sites of the study are four “large-scale potential landslide areas” registered in the government database located in Meinong, Shanlin, and Jiasian in southern Taiwan. The topographic mapping was conducted with an airborne light detection and ranging instrument. The resolution of the digital elevation model is 1 m. Each topographic profile was decomposed into a number of intrinsic mode function (IMF) components. Terrain characterization was then performed with the spectrum resulting from IMF decomposition. This research found that the features of landslides, including main scarp-head, minor scarp, gully, and flank, have strong correspondence to the features in the IMF spectrum, mainly from the first and the second IMF components. The geometric signatures derived with HHT could contribute to the delineation of the landslide area in addition to other signatures in the terrain analysis process.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3