Geothermal resource potential assessment of Erdaobaihe, Changbaishan volcanic field: Constraints from geophysics

Author:

Xu Zhi-He12,Sun Zhen-Jun12,Xin Wei3,Zhong Liping4

Affiliation:

1. Institute of Disaster Prevention , Sanhe City , 065201 , People’s Republic of China

2. Hebei Key Laboratory of Earthquake Dynamics , Sanhe City , 065201 , People’s Republic of China

3. College of Earth Science and Engineering, Shandong University of Science and Technology , Qingdao 266590 , People’s Republic of China

4. Jilin Exploration Geophysics Institute , Changchun City , 130012 , People’s Republic of China

Abstract

Abstract Geothermal resources occurring in the Changbaishan volcanic field are directly or indirectly controlled by volcanic activity and exhibit a close correlation with deep-seated faults. Energy and thermal transfer are generally controlled by groundwater circulation and hot gas emission. This article considers the detectability of hot water and gas by geophysical methods. The controlled source acoustic magnetotelluric (CSAMT) and radon (222Rn) gas methods give straightforward information on electrical resistivity and natural radon emissions, respectively, to assess the geothermal condition. The CSAMT method detected five-banded low-apparent resistivity bodies (decreasing from 3,000 to 300 Ωm), indicating that there exists a high degree of water-bearing capacities in the subsurface. The radon (222Rn) gas concentrations were monitored in two rapid growth zones: one zone showing values ranging from 3,000 to 23,000 Bq/m3, and the other with values from 4,000 to 24,000 Bq/m3. These changes demonstrate that the heat energies available in these areas were very high and that there is potential for geothermal resources in those zones. Combining with previously published data from geothermometry and geothermal drilling, we argue that there is great potential in Erdaobaihe for geothermal exploitation and that the geothermal resource type should be classified into uplift mountain geothermal system no magma type.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3