Land use/land cover assessment as related to soil and irrigation water salinity over an oasis in arid environment

Author:

Biro Turk Khalid G.1,Aljughaiman Abdullah S.2

Affiliation:

1. Water Studies Center, King Faisal University , Al-Ahsa 31982 , Saudi Arabia

2. Department of Environmental and Natural Resources, College of Agricultural & Food Sciences, King Faisal University , Al-Ahsa 31982 , Saudi Arabia

Abstract

Abstract The land use and land cover (LULC) changes and the implications of soil and irrigation water salinity have adverse effects on crop production and the ecosystems of arid and semiarid regions. In this study, an attempt has been made to analyze and monitor the LULC changes using multitemporal Landsat data for years 1986, 1998, 2007, and 2016 in Al-Ahsa Oasis, Saudi Arabia. In addition, efforts were made to measure the spatial distribution of soil and irrigation water salinity along the oasis. The supervised maximum likelihood classification method was applied to classify the individual images independently. Moreover, soil samples were collected at surface soil depth from the selected LULC types, namely, date palm, croplands, and bare land. Also, groundwater samples were collected from bore wells located in agricultural farms. The spatial distribution of the soil salinity (Ece) and irrigation water salinity (ECiw) was classified based on the Food and Agriculture Organization guidelines. The results showed that significant changes in LULC patterns have occurred during 1986–2016 in the study area. The ECe was found higher in date palm compared with cropland and bare land. However, the spatial distribution of the ECiw over the oasis indicated that 94% of irrigation water ranged between moderate and severe salinity risk. The study concludes that salinity management practices need to be developed in the study area aiming to sustain crop yields, improve soil properties, and minimize the environmental impacts of LULC changes on the ecosystem of Al-Ahsa Oasis.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3