Application of multivariate regression on magnetic data to determine further drilling site for iron exploration

Author:

Feizi Faranak1,Karbalaei-Ramezanali Amir Abbas2,Farhadi Sasan3

Affiliation:

1. Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University , Tehran , Iran

2. Department of Geology, Science and Research Branch, Islamic Azad University , Tehran , Iran

3. Department of Environment, Land and Infrastructure Engineering, Polytechnic University of Turin , Turin , Italy

Abstract

Abstract In this study, a new approach of the multivariate regression model has been applied to make a precise mathematical model to determine further drilling for the detailed iron exploration in the Koohbaba area, Northwest of Iran. Furthermore, to figure out the additional drilling locations, the ore length to the total core ratio for the drilled boreholes has been used based on the geophysical exploration dataset. Hence, different regression analyses including linear, cubic, and quadratic models have been applied. In this study, the ore length to the total core ratio of the chosen drilled boreholes has been considered as a dependent variable; besides, the outputs of the magnetic data using the UP10 (10m upward-continuation), RTP (reduction to the pole), and A.S. (analytic signal) techniques have been designated as independent variables. Based on probability value (p-value), coefficients of determination (R 2 and R adj 2 {R}_{\text{adj}}^{2} ), and efficiency formula (EF), the fourth regression model has revealed the best results. The accuracy of the model has been confirmed by the defined ratio of boreholes and demonstrated by four additional drilled boreholes in the study area. Therefore, the results of the regression analysis are reasonable and can be used to determine the additional drilling for the detailed exploration.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3