Fracture characteristics from outcrops and its meaning to gas accumulation in the Jiyuan Basin, Henan Province, China

Author:

Sun Changyan12,Su Xianbo23,Yang Heng1,Li Feng3

Affiliation:

1. School of Resources and Environment, Henan Polytechnic University , Jiaozuo 454000 , China

2. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region , Henan Province , Jiaozuo 454000 , China

3. School of Energy Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo City , Henan Province , Jiaozuo 454000 , China

Abstract

Abstract The target Oil-Shale Member (TOSM) in the Upper Triassic Tanzhuang Formation in the Jiyuan Basin is about 140 m thick and its burial depth is generally between 3,000 and 7,000 m. This paper presents a study of fractures in outcrop analogs for the TOSM based on outcrop observations and experimental measurements. The role of fractures in gas accumulation in the Jiyuan Basin was also analyzed. Also, a workflow used in building discrete fracture models based on the outcrop observed data is described. Results show that the average total organic carbon content and vitrinite reflectance of the oil shale are 4.13 and 1.33%, respectively, with the organic matter type dominated by sapropel-humics (II1), indicating high potential for shale gas generation. Fracture characteristics showing mostly vertical or intersect the bedding at high angles, and partially unfilled. The fracture lengths and widths range from a few centimeters to several hundred meters, and 0.05 to 0.5 cm, respectively, and the average linear fracture density is 6.3 m. In addition, the average brittle-mineral content of the oil shale is 53.7%, indicating that the oil shale in the TOSM has strong fracability. The hydrocarbon generation occurred twice in the TOSM. The primary reservoir formed by the first hydrocarbon generation was destroyed by fractures and tectonic uplift, and partial hydrocarbon migrated to the Paleogene along the second-phase fractures to form a secondary reservoir. The gas formed by the second hydrocarbon generation was mainly migrated into the fracture network of the TOSM.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3