Toward rainfall prediction by machine learning in Perfume River Basin, Thua Thien Hue Province, Vietnam

Author:

Giang Nguyen Hong12,Wang YuRen2,Hieu Tran Dinh1,Tho Quan Thanh3,Phuong Le Anh4,Tu Do Hoang Ngo5

Affiliation:

1. Faculty of Architecture, ThuDauMot University , ThuDauMot 820000 , Vietnam

2. Civil Engineering Faculty, National Kaohsiung University of Science and Technology , Kaohsiung 80778 , Taiwan

3. Faculty of Computer Engineering, HoChiMinh University of Technology , HoChiMinh 27169 , Vietnam

4. Department of Computer Science, Hue University of Education, Hue University , Hue 49118 , Vietnam

5. Faculty of Geology and Geography of Sciences University, Hue University , Hue 49100 , Vietnam

Abstract

Abstract This study examines rainfall forecasting for the Perfume (Huong) River basin using the machine learning method. To be precise, statistical measurement indicators are deployed to evaluate the reliability of the actual accumulated data. At the same time, this study applied and compared two popular models of multi-layer perceptron and the k-nearest neighbors (k-NN) with different configurations. The calculated rainfall data are obtained from the Hue, Aluoi, and Namdong hydrological stations, where the rainfall demonstrated a giant impact on the downstream from 1980 to 2018. This study result shows that both models, once fine-tuned properly, enjoyed the performance with standard metrics of R_squared, mean absolute error, Nash–Sutcliffe efficiency, and root-mean-square error. In particular, once Adam stochastic is deployed, the implementation of the MLP model is significantly improving. The promising forecast results encourage us to consider applying these models with future data to help natural disaster non-stop mitigation in the Perfume River basin.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3