A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils

Author:

Středová Hana1,Spáčilová Bronislava1,Podhrázská Jana2,Chuchma Filip3

Affiliation:

1. Mendel University in Brno, Institute of Applied and Landscape Ecology, Brno, Czech Republic

2. Research Institute for Soil and Water Conservation, Brno, Czech Republic

3. Czech Hydrometeorological Institute, Brno, Czech Republic

Abstract

Abstract The climate of Central Europe, mainly winter seasons with no snow cover at lower altitudes and a spring drought as well, might cause erosion events on heavy-textured soils. The aim of this paper is to define a universal method to identify the potential risk of wind erosion on heavy-textured soils. The categorization of potential wind erosion risk due to meteorological conditions is based on: (i) an evaluation of the number of freeze-thaw episodes forming bare soil surfaces during the cold period of year; and (ii), an evaluation of the number of days with wet soil surfaces during the cold period of year. In the period 2001–2012 (from November to March), episodes with temperature changes from positive to negative and vice versa (thaw-freeze and freeze-thaw cycles) and the effects of wet soil surfaces in connection with aggregate disintegration, are identified. The data are spatially interpolated by GIS tools for areas in the Czech Republic with heavy-textured soils. Blending critical categories is used to locate potential risks. The level of risk is divided into six classes. Those areas identified as potentially most vulnerable are the same localities where the highest number of erosive episodes on heavy-textured soils was documented.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind Erosion, Climate Change, and Shelterbelts;Advances in Environmental Engineering and Green Technologies;2022

2. The Road Map to Classify the Potential Risk of Wind Erosion;ISPRS International Journal of Geo-Information;2021-04-20

3. Aplikace fenologických pozorování v aplikované a krajinné ekologii;2021

4. Effect of windbreaks on wind speed reduction and soil protection against wind erosion;Soil and Water Research;2017-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3