Regularity theory for tangent-point energies: The non-degenerate sub-critical case

Author:

Blatt Simon1,Reiter Philipp2

Affiliation:

1. 1Karlsruhe Institute of Technology, Institut für Analysis, Kaiserstrasse 89-93, 76131 Karlsruhe, Germany

2. 2Fakultät für Mathematik, University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany

Abstract

AbstractIn this article we introduce and investigate a new two-parameter family of knot energies ${\operatorname{TP}^{(p,\,q)}}$ that contains the tangent-point energies. These energies are obtained by decoupling the exponents in the numerator and denominator of the integrand in the original definition of the tangent-point energies. We will first characterize the curves of finite energy ${\operatorname{TP}^{(p,\,q)}}$ in the sub-critical range p ∈ (q+2,2q+1) and see that those are all injective and regular curves in the Sobolev–Slobodeckiĭ space ${W^{\scriptstyle (p-1)/q,q}(\mathbb {R}/\mathbb {Z},\mathbb {R}^n)}$. We derive a formula for the first variation that turns out to be a non-degenerate elliptic operator for the special case q = 2: a fact that seems not to be the case for the original tangent-point energies. This observation allows us to prove that stationary points of $\operatorname{TP}^{(p,2)}$ + λ length, p ∈ (4,5), λ > 0, are smooth – so especially all local minimizers are smooth.

Funder

Swiss National Science Foundation

Leverhulm trust

DFG Transregional Collaborative Research Centre

Czech Ministry of Education

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Race Tracks With Repulsive Curves;2024 IEEE Conference on Games (CoG);2024-08-05

2. Banach gradient flows for various families of knot energies;Journal of Evolution Equations;2023-04-11

3. Tangent-point energies and ropelength as Gamma-limits of discrete tangent-point energies on biarc curves;Advances in Continuous and Discrete Models;2023-01-17

4. Symmetric elastic knots;Mathematische Annalen;2022-01-31

5. Repulsive surfaces;ACM Transactions on Graphics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3