Author:
Anza Hafsa Omar,Mandallena Jean-Philippe
Abstract
AbstractWe give an extension of the theory of relaxation of variational integrals in classical Sobolev spaces to the setting of metric Sobolev spaces. More precisely, we establish a general framework to deal with the problem of finding an integral representation for “relaxed” variational functionals of variational integrals of the calculus of variations in the setting of metric measure spaces. We prove integral representation theorems, both in the convex and non-convex case, which extend and complete previous results in the setting of euclidean measure spaces to the setting of metric measure spaces. We also show that these integral representation theorems can be applied in the setting of Cheeger–Keith's differentiable structure.
Subject
Applied Mathematics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献