Comparative analysis of optical data center switches

Author:

Sinha Amit1,Bhardwaj Diwakar1,Shukla Vaibhav2ORCID

Affiliation:

1. GLA Mathura , Mathura , Uttar Pradesh , India

2. TechMahindra , Mumbai , Maharashtra , India

Abstract

Abstract In the recent past, there has been an explosive growth in data traffic within data center systems. This rapid increase in data volume has put significant constraints on the speed of current data communication networks, which are predominantly based on electronic controllers and memory. The speed limitations of electronic devices hinder their ability to process data at higher rates efficiently. To address this issue and enable faster data processing, the use of optical communication emerges as the most promising solution. Optical communication leverages the capabilities of light signals and optical components, which can handle data at much higher rates compared to their electronic counterparts. One key element in optical communication systems is the utilization of fiber delay lines (FDLs) as optical storage for packets. FDLs offer the ability to temporarily store and delay optical signals, providing buffering capabilities within optical networks. These FDLs can be configured in various setups, including feed forward, feed backward, and recirculating configurations, each with its own set of advantages and disadvantages. In this context, this article explores several state-of-the-art arrayed waveguide grating (AWG)-based optical packet switch (OPSW) architectures. These switches are designed to efficiently route and manage optical packets within data center networks. Each architecture is summarized, highlighting its unique features and capabilities. To compare the different AWG-based OPSW architectures, various key parameters are considered, such as the cost, physical losses, bit error rate (BER), and the number of tunable components required. These parameters are critical in determining the performance, efficiency, and cost-effectiveness of the switches.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3