Efficient NOMA system: hybrid heuristic-based network parameter optimization for spectral and energy efficiency with QoS maximization

Author:

Devi R. Prameela12,Prabakaran N.1

Affiliation:

1. Department of ECE , Koneru Lakshmaiah Education Foundation , Vaddeswaram , Andhra Pradesh , India

2. Department of ECE , CVR College of Engineering , Hyderabad , Telangana , India

Abstract

Abstract Due to its ability to boost the spectral efficiency of wireless communications systems, non-orthogonal multiple access (NOMA) has been deemed promising. NOMA retains the necessary effectiveness to enable 5G communication. The wireless network’s spectral efficiency and energy are reduced due to the limited spectrum and rising demands of users. Because of the mutual cross-tier interference that occurs in heterogeneous networks, NOMA presents brand-new technical difficulties in resource allocation. The use of non-orthogonal resources and spectrum sharing can cause interference that lowers the performance. Therefore, incorporating quality-of-service (QoS) into the design of a new NOMA model with improved bandwidth efficiency and energy efficiency (EE) is absolutely necessary. A deep learning strategy for maximizing the efficiency of spectrum and energy with QoS in NOMA is presented in this paper. In order to increase the efficiency of spectrum and energy with QoS in the NOMA system, an adaptive artificial rabbits Harris Hawks optimization (AARHHO) algorithm is developed to optimize parameters such as the time allocation ratio and beam forming vectors presented in the full-duplex (FD) relay and base station (BS). As a result, the NOMA network efficiency of bandwidth and energy is effectively maximized with QoS using the newly developed AARHHO approach.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3