Enhancing high-speed networks using RGB-based WLAN through Ro-FSO integration in the 5 GHz band

Author:

Sharma Abhishek1ORCID,Mishra Vivekanand2

Affiliation:

1. Department of Electronics Technology , Guru Nanak Dev University , Amritsar 143005 , India

2. Division of Physics, Department of Science , Alliance University , Bangalore 562106 , India

Abstract

Abstract The limited bandwidth constraints imposed by conventional wireless carriers pose a significant hurdle when it comes to the delivery of high-speed broadband services. In response to this challenge, Radio over Free Space Optics (Ro-FSO) has emerged as a viable and innovative solution, seamlessly amalgamating wireless and optical systems. This integration proves particularly invaluable in sensitive environments, such as hospitals, where the risk of electromagnetic interference disrupting critical medical equipment is a real concern. Ro-FSO offers a disruption-free avenue for high-speed data transmission, positioning it as the ideal choice for broadband services, including Wireless Local Area Networks (WLANs). Within the scope of this study, we introduce a high-speed Ro-FSO link, showcasing the capability to concurrently transmit three independent channels with Red, Green and Blue (RGB) laser respectively, each supporting a robust 1 Gbps data rate. These data streams are skilfully up-converted to the 5 GHz RF bands, encompassing transmission distances of 650 m across the FSO channel. Our numerical simulation findings underscore the successful transmission of all the channels using wavelength division multiplexing (WDM), seamlessly meeting the prescribed Bit Error Rate (BER) and eye pattern criteria, solidifying the Ro-FSO’s standing as a promising solution for high-speed broadband delivery.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3