Link handling for the atmospheric turbulence using LSTM neural networks in free space optical (FSO) communication

Author:

Lapsiwala Pranav B.1,Vasava Priteshkumar B.2

Affiliation:

1. Department of Electronics and Communication, Sarvajanik College of Engineering and Technology , Surat , India

2. Gujarat Technological University , Ahmedabad , India

Abstract

Abstract Free-space optical (FSO) communication is an emerging technology that uses light waves to transmit data, providing a faster and more efficient alternative to traditional wired communication. However, FSO communication is susceptible to atmospheric turbulence caused by factors such as rain, snow, and fog. To overcome this challenge, this study employs artificial neural network (ANN) and long short-term memory (LSTM) models to analyze the impact of atmospheric turbulence on FSO communication. The results indicate that higher wavelengths experience less attenuation than lower wavelengths in the presence of fog. The use of ANN and LSTM models to analyze the attenuation of various wavelengths in the presence of fog has shown that higher wavelengths experience less attenuation than lower wavelengths. Additionally, the LSTM model outperforms the ANN model in handling atmospheric turbulence, with an accuracy of 64.68 % compared to 63.98 %. These findings highlight the need for adaptive networks that can quickly adjust to traffic situations while being cost-effective. As the fiber optics industry continues to expand and evolve, there is potential for further developments in optical communications that prioritize speed, efficiency, and flexibility. As technology advances, the pursuit of faster and more reliable communication will continue to drive innovation in this field.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3