A clinically-guided unsupervised clustering approach to recommend symptoms of disease associated with diagnostic opportunities

Author:

Miller Aaron C.1,Arakkal Alan T.2,Koeneman Scott H.2,Cavanaugh Joseph E.2,Polgreen Philip M.1

Affiliation:

1. Department of Internal Medicine , Carver College of Medicine, University of Iowa , Iowa City , IA , USA

2. Department of Biostatistics , College of Public Health, University of Iowa , Iowa City , IA , USA

Abstract

Abstract Objectives A first step in studying diagnostic delays is to select the signs, symptoms and alternative diseases that represent missed diagnostic opportunities. Because this step is labor intensive requiring exhaustive literature reviews, we developed machine learning approaches to mine administrative data sources and recommend conditions for consideration. We propose a methodological approach to find diagnostic codes that exhibit known patterns of diagnostic delays and apply this to the diseases of tuberculosis and appendicitis. Methods We used the IBM MarketScan Research Databases, and consider the initial symptoms of cough before tuberculosis and abdominal pain before appendicitis. We analyze diagnosis codes during healthcare visits before the index diagnosis, and use k-means clustering to recommend conditions that exhibit similar trends to the initial symptoms provided. We evaluate the clinical plausibility of the recommended conditions and the corresponding number of possible diagnostic delays based on these diseases. Results For both diseases of interest, the clustering approach suggested a large number of clinically-plausible conditions to consider (e.g., fever, hemoptysis, and pneumonia before tuberculosis). The recommended conditions had a high degree of precision in terms of clinical plausibility: >70% for tuberculosis and >90% for appendicitis. Including these additional clinically-plausible conditions resulted in more than twice the number of possible diagnostic delays identified. Conclusions Our approach can mine administrative datasets to detect patterns of diagnostic delay and help investigators avoid under-identifying potential missed diagnostic opportunities. In addition, the methods we describe can be used to discover less-common presentations of diseases that are frequently misdiagnosed.

Funder

Agency for Healthcare Research and Quality

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Public Health, Environmental and Occupational Health,Health Policy,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3