Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking

Author:

Blomberg Jonas,Persson Bengt,Bexell Ulf

Abstract

Abstract Images obtained by scanning electron microscopy (SEM) helped to clarify the question as to how anatomy influences the deformation on compression and the springback of densified wood on water soaking. Transverse sections of Norway spruce (Picea abies), Scots pine (Pinus sylvestris), black alder (Alnus glutinosa), Swedish aspen (Populus tremula), European birch (Betula pubescens), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) were studied. Wood is reinforced with rays in the radial direction and with dense latewood in the tangential direction. When strained radially, rays buckle or tilt tangentially. Softwoods were mainly compressed radially, owing to low number of rays and since latewood is much denser than earlywood. The diffuse-porous hardwoods with low density variation between latewood and earlywood were mainly deformed tangentially, except birch, which has high density at the annual ring border and is mainly compressed radially. The ring-porous hardwoods were relatively equally deformed in the radial and tangential directions because of the high number of rays and high latewood density. Moisture-induced springback (shape recovery) was proportional to the degree of compression. Rays remained deformed, which also influenced the surrounding wood. Longitudinal wood cells almost resumed their original shape. Wood with low density and a low degree of compression showed the highest structural recovery. Shearing deformation was particularly pronounced and permanent in woods with high strength anisotropy. Thin-walled and sheared cells, such as earlywood in softwood, tended to crack on compression. Cracks usually stopped at the middle lamella and had a lesser influence on strength properties than for lumen-to-lumen cracks.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3