The role of symmetry in the regulation of bacterial carboxyltransferase

Author:

Waldrop Grover L.1

Affiliation:

1. 1Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

AbstractCarboxyltransferase is one component of the multifunctional enzyme acetyl-CoA carboxylase which catalyzes the first committed step in fatty acid biosynthesis. Carboxyltransferase is an α2β2heterotetramer and possesses two distinct but integrated functions. One function catalyzes the transfer of carbon dioxide from biotin to acetyl-CoA, whereas the other involves binding to the mRNA encoding both subunits. When carboxyltransferase binds to the mRNA both enzymatic activity and translation of the mRNA are inhibited. However, the substrate acetyl-CoA competes with mRNA for binding. Thus, mRNA binding by carboxyltransferase provides an effective mechanism for regulating enzymatic activity and gene expression. This conceptual review takes the position that regulation of enzymatic activity and gene expression of carboxyltransferase by binding to its own mRNA is at its most fundamental level the result of the symmetry in the chemical reaction catalyzed by the enzyme. The chemical reaction is symmetrical in that both substrates generate enolate anions during the course of catalysis. The chemical symmetry led to a structural symmetry in the enzyme where both the α and β subunits contain oxyanion holes that stabilize the enolate anions. Then the region of the mRNA that codes for the oxyanion holes provided the binding sites for carboxyltransferase. Thus, the symmetry of the chemical reaction formed the foundation for the evolution of the mechanism for regulation of carboxyltransferase.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3