Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains

Author:

Foondun Mohammud1,Mijena Jebessa B.2,Nane Erkan3

Affiliation:

1. Department of Mathematics and Statistics University of Strathclyde, Glasgow G1 1XH, Scotland, UK

2. Department of Mathematics, Georgia College & State University 231 W. Hancock St, Milledgeville, GA 31061, USA

3. Department of Mathematics and Statistics, Auburn University 221 Parker Hall, Auburn, AL 36830, USA

Abstract

Abstract In this paper we study non-linear noise excitation for the following class of space-time fractional stochastic equations in bounded domains: t β u t ( x ) = ν ( Δ ) α / 2 u t ( x ) + I t 1 β [ λ σ ( u ) F ( t , x ) ] $$\partial^\beta_tu_t(x) = -\nu(-\Delta)^{\alpha/2} u_t(x)+I^{1-\beta}_t[\lambda \sigma(u) \stackrel{\cdot}{F}(t,x)] $$ in (d+1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2]. The operator t β $\partial^\beta_t$ is the Caputo fractional derivative, −(−Δ) α/2 is the generator of an isotropic stable process and I 1β t is the fractional integral operator. The forcing noise denoted by F ( t , x ) $\stackrel{\cdot}{F}(t,x)$ is a Gaussian noise. The multiplicative non-linearity σ : ℝ → ℝ is assumed to be globally Lipschitz continuous. These equations were recently introduced by Mijena and Nane [32]. We first study the existence and uniqueness of the solution of these equations and under suitable conditions on the initial function, we also study the asymptotic behavior of the solution with respect to the parameter λ. In particular, our results are significant extensions of those in [14], [16], [32], and [33].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference46 articles.

1. B. Baeumer, M. Geissert, M. Kovacs, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise. J. of Differential Equations258, No 2 (2015), 535–554.

2. B. Baeumer, M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, No 4 (2001), 481–500.

3. J. Bertoin, Lévy Processes. Cambridge Univ. Press, Cambridge (1996).

4. L. Boulanba, M. Eddahbi, M. Mellouk, Fractional SPDEs driven by spatially correlated noise: existence of the solution and smoothness of its density. Osaka J. Math.47, No 1 (2010), 41–65.

5. M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc.13 (1967), 529–539; Reprinted in:Fract. Calc. Appl. Anal.11, No 1 (2008), 3–14; available at http://www.math.bas.bg/~fcaa.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3