Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion

Author:

Chen Wen1,Liang Yingjie1,Hei Xindong1

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering College of Mechanics and Materials, Hohai University No. 8 Focheng West Road, Nanjing, 211100, China

Abstract

Abstract This paper proposes a novel structural derivative approach to tackle the perplexing modeling problem of ultraslow diffusion. The structural function plays a central role in this new strategy as a kernel transform of underlying time-space fabric of physical systems. Ultraslow diffusion has been observed in numerous lab experiments and field observations, whose behaviors deviate dramatically from the standard anomalous diffusion models characterizing power function of time. The logarithmic diffusion model has since been used to describe bizarre process of ultraslow diffusion but with very limited success. This study applies the inverse Mittag-Leffler function as the structural function in the structural derivative modeling ultraslow diffusion of a random system of two interacting particles. It is observed that the dynamics of two interacting particles are respectively the ballistic motion at the short time scale and the Sinai ultraslow diffusion at the long time scale. Compared with the logarithmic diffusion model, the inverse Mittag-Leffler diffusion model has higher accuracy and manifests clearer physical mechanism. Numerical experiments show that the structural derivative is a feasible mathematical tool to model the ultraslow diffusion using the inverse Mittag-Leffler function as its structural function.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference34 articles.

1. S.D.T. Arias, X. Waintal, J.L. Pichard, Two interacting particles in a disordered chain III: Dynamical aspects of the interplay disorderinteraction. Eur. Phys. J. B10 (1999), 149—158.

2. F. Bowman, Introduction to Bessel Functions. Courier Corporation (2012).

3. C.B. Boyer, U.C. Merzbach, A History of Mathematics. John Wiley Sons (2011).

4. E.B. Brauns, M.L. Madaras, R.S. Coleman, et al., Complex local dynamics in DNA on the picosecond and nanosecond time scales. Phys. Rev. Lett. 88 (2002), Article # 158101.

5. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1 (2015), 73—85.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3