Comprehensive technical review of the high-efficiency low-emission technology in advanced coal-fired power plants

Author:

Lee Soonho1,Kim Jongho1,Tahmasebi Arash1,Jeon Chung-Hwan2ORCID,Liu Yangxian3,Yu Jianaglong14ORCID

Affiliation:

1. Chemical Engineering and International Collaborative Centre for Carbon Futures , University of Newcastle , Callaghan , NSW , 2308 , Australia

2. Pusan Clean Energy Research Institute (ICCCF Korea), Pusan National University , Busan , 46241 , Korea

3. School of Energy and Power Engineering , Jiangsu University , Zhenjiang , Jiangsu , 212013 , China

4. Suzhou Industry Park Monash Research Institute of Science & Technology, Southeast University—Monash University Joint Graduate School , Suzhou , 21500 , China

Abstract

Abstract Advancements in supercritical (SC), ultrasupercritical (USC), and advanced USC coal-fired power plants have been achieved through the development of enhanced materials utilized in advanced steam cycles and through the deployment of advanced emission control systems. These are referred to as high-efficiency low-emission (HELE) technologies, which may solve numerous issues associated with coal-based power generation. There is a clear global transition from subcritical to advanced power plant types and significant R&D work on HELE technologies. Therefore, this comprehensive review covers the latest HELE technology deployment in major coal-consuming countries and their R&D roadmaps to advance HELE technologies. In spite of the various advantages of HELE technologies, there have been numerous technical challenges relevant to achieving the HELE steam conditions and deploying low emission control technologies in the HELE systems. Hence, this review covers the technical challenges and the relevant recent research by using various coal combustion test facilities. The current focus for the progression from USC boilers to advanced USC boilers is a successful demonstration of the developed high-performance alloys under the advanced steam conditions. This review covers the current status of research and development of advanced USC (A-USC) materials and challenges based on the major material research programs.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3