Marangoni effect in nonequilibrium multiphase system of material processing

Author:

Wang Ji-min,Liu Guo-hua,Fang Yun-long,Li Wen-ke

Abstract

AbstractIn a nonequilibrium multiphase system, the Marangoni effect has important influence on interphase heat and mass transfer induced by interfacial tension gradient associated with either solutal or thermal gradients in numerous applications. Although the basic knowledge of the Marangoni effect has made great progress, its mechanism is not yet fully recognized. An in-depth understanding of the basic principles of heat and mass transport induced by the Marangoni effect is important for better operation of interphase transfer units. This report aims to provide a systematic study of the mechanisms of the Marangoni effect. Special foci are concentrated on the field of material processing, which encompasses the process wherein the raw materials are transformed into useful engineering products. A series of experimental, theoretical, or simulated results are extracted from the literature to elucidate the mechanism of the Marangoni effect and to rationalize the interphase transport phenomena. We examine the major physical explanations and attempt to distinguish the working principle behind the process. Perspectives are also proposed to trigger further innovative thinking about the topics. This work provides new insight into material processing by taking advantage of the Marangoni effect and has far-reaching implications in the design of future nonequilibrium multiphase system.

Funder

Natural Science Foundation of Anhui Province

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference230 articles.

1. Marangoni instability during absorption accompanied by chemical reaction;Chem Eng J Biochem Eng J,1995

2. Oscillatory Marangoni instability during absorption accompanied by chemical reaction;Chem Eng Sci,1991b

3. Numerical simulation of steady thermocapillary convection in a two-layer system using level set method;Microgravity Sci Technol,2010

4. Thermosolutocapillary convection in an open rectangular cavity with dynamic free surface;J Heat Transfer,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3