Affiliation:
1. Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
2. Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Subject
General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献