Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry

Author:

Carpenter Jitendra,Badve Mandar,Rajoriya Sunil,George Suja,Saharan Virendra Kumar,Pandit Aniruddha B.

Abstract

AbstractHydrodynamic cavitation (HC) has been explored by many researchers over the years after the first publication on hydrolysis of fatty oils using HC was published by Pandit and Joshi [Pandit AB, Joshi JB. Hydrolysis of fatty oils: effect of cavitation. Chem Eng Sci 1993; 48: 3440–3442]. Before this publication, most of the studies related to cavitation in hydraulic system were concentrated to avoid the generation of cavities/cavitating conditions. The fundamental concept was to harness the energy released by cavities in a positive way for various chemical and mechanical processes. In HC, cavitation is generated by a combination of flow constriction and pressure-velocity conditions, which are monitored in such a way that cavitating conditions will be reached in a flowing system and thus generate hot spots. It allows the entire process to operate at otherwise ambient conditions of temperature and pressure while generating the cavitating conditions locally. In this review paper, we have explained in detail various cavitating devices and the effect of geometrical and operating parameters that affect the cavitation conditions. The optimization of different cavitating devices is discussed, and some strategies have been suggested for designing these devices for different applications. Also, various applications of HC such as wastewater treatment, preparation of nanoemulsions, biodiesel synthesis, water disinfection, and nanoparticle synthesis were discussed in detail.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3