Hydrodynamic review on liquid–solid magnetized fluidized bed

Author:

Zhu Quanhong12,Huang Qingshan123,Yang Chao13

Affiliation:

1. Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, Shandong , China

2. Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences , Dalian 116000, Liaoning , China

3. Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China

Abstract

Abstract The magnetic field has been successfully used to intensify the liquid–solid contact performance in the fluidized bed, creating the magnetized fluidized bed (MFB). The MFBs with purely magnetizable particles and with the binary admixture of magnetizable and nonmagnetizable particles could be simply termed the pure MFB and admixture MFB, respectively. Their potential application in the chemical and biochemical industries has been thoroughly explored in the literature. However, a fundamental investigation on the hydrodynamics therein is far from sufficient, severely hindering the commercial application. For this reason, this review summarized the relevant findings, including (1) flow regime transition, (2) boundaries between two adjacent flow regimes, (3) unique features of the magnetically stabilized bed, (4) hysteresis phenomenon and bed voidage, (5) minimum fluidization velocity and terminal velocity, (6) numerical simulation and segregation of the admixture MFB, and (7) some explored applications. More importantly, the existing controversies and unsolved issues in this area were identified. Among others, the flow regime transition and unique hydrodynamic characteristics of each flow regime should be first clarified, only after which could the terminology describing all the flow regimes be unified and the results from different scholars be compared.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3