Synthesis and applications of surface-modified magnetic nanoparticles: progress and future prospects

Author:

García-Merino Belén1,Bringas Eugenio1,Ortiz Inmaculada1

Affiliation:

1. Department of Chemical and Biomolecular Engineering , ETSIIT, University of Cantabria , Avda. Los Castros s/n , 39005 Santander , Spain

Abstract

Abstract The growing use of magnetic nanoparticles (MNPs) demands cost-effective methods for their synthesis that allow proper control of particle size and size distribution. The unique properties of MNPs include high specific surface area, ease of functionalization, chemical stability and superparamagnetic behavior, with applications in catalysis, data and energy storage, environmental remediation and biomedicine. This review highlights breakthroughs in the use of MNPs since their initial introduction in biomedicine to the latest challenging applications; special attention is paid to the importance of proper coating and functionalization of the particle surface, which dictates the specific properties for each application. Starting from the first report following LaMer’s theory in 1950, this review discusses and analyzes methods of synthesizing MNPs, with an emphasis on functionality and applications. However, several hurdles, such as the design of reactors with suitable geometries, appropriate control of operating conditions and, in particular, reproducibility and scalability, continue to prevent many applications from reaching the market. The most recent strategy, the use of microfluidics to achieve continuous and controlled synthesis of MNPs, is therefore thoroughly analyzed. This review is the first to survey continuous microfluidic coating or functionalization of particles, including challenging properties and applications.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3