Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review

Author:

Othman Nur Hidayati1ORCID,Kabay Nalan2,Guler Enver3

Affiliation:

1. School of Chemical Engineering, College of Engineering , Universiti Teknologi MARA , Shah Alam , 40450 Selangor Darul Ehsan , Malaysia

2. Department of Chemical Engineering , Ege University , 35100 Izmir , Turkey

3. Department of Chemical Engineering , Atilim University , 06830 Ankara , Turkey

Abstract

Abstract Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3