Molecular dynamics simulation study used in systems with supercritical water

Author:

Jin Hui1,Ding Weijing1,Bai Bin1,Cao Changqing1

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an JiaoTong University , 710049, Shaanxi , China

Abstract

Abstract Supercritical water (SCW) is a green solvent. The supercritical fluids have been increasingly concerned and studied in many areas such as SCW gasification, biofuel production, SCW hydrothermal conversion, organic wastes treatment and utilization, nanotechnology, etc. Because of the severe circumstances and rapid reactions in supercritical water, it is difficult for experimental researchers to disentangle various fundamental reaction steps from the intermediate and product distributions. From this perspective, molecular dynamics (MD) simulation based on quantum chemistry is an efficient tool for studying and exploring complex molecular systems. In recent years, molecular simulations and quantum chemical calculations have become powerful for illustrating the possible internal mechanism of a complex system. However, now there is no literature about the overview of MD simulation study of the system with SCW. Therefore, in this paper, an overview of MD simulation investigation applied in various systems with SCW is presented. In the current review we explore diverse research areas. Namely, the applications of MD simulation on investigating the properties of SCW, pyrolysis/gasification systems with SCW, dissolution systems and oxidation systems with SCW were summarized. And the corresponding problems in diverse systems were discussed. Furthermore, the advances and problems in MD simulation study were also discussed. Finally, possible directions for future research were outlined. This work is expected to be one reference for the further theoretical and molecular simulation investigations of systems involving SCW.

Funder

China National Key Research and Development Plan Project

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3