Ignition–extinction analysis of catalytic reactor models

Author:

Balakotaiah Vemuri1,Sun Zhe1ORCID,Ratnakar Ram2ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering , University of Houston , Engineering Bldg. 1, 4726 Calhoun Rd , Houston , TX 77204 , USA

2. R&D – Mathematics and Computation, Shell International Exploration and Production Inc. , 3333 Highway 6S , Houston , TX 77082 , USA

Abstract

Abstract A detailed analysis of the ignition–extinction and hysteresis behavior of the two widely used catalytic reactor models (packed-bed and monolith) for the case of a single exothermic reaction is presented. First, limiting models are used to determine the minimum adiabatic temperature rise and/or catalyst activity needed to observe hysteresis behavior. Next, explicit expressions are provided for estimating the feed temperature or space time at ignition (light-off) and extinction (blow-out) as a function of the adiabatic temperature rise (or inlet concentration of limiting reactant), effective thermal conductivity, time and length scales (reactor, tube/channel diameter, effective diffusion length and pore size), catalyst activity (or dilution) and heat loss. It is shown that various limiting reactor models such as the thin-bed, long-bed, lumped thermal, adiabatic and strongly cooled cases that are defined in terms of various inter- and intraphase heat and mass dispersion time scales can be used to derive scaling relations that are useful in predicting the ignition/extinction loci for both laboratory scale (with heat exchange) and large scale (near adiabatic) reactors.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3