Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD)

Author:

Jurtz Nico1,Kraume Matthias1,Wehinger Gregor D.2

Affiliation:

1. Chemical and Process Engineering, Technical University of Berlin , Fraunhoferstr. 33-36 , 10587 Berlin , Germany

2. Chemical and Electrochemical Process Engineering, Clausthal University of Technology , Leibnizstr. 17 , 38678 Clausthal-Zellerfeld , Germany

Abstract

Abstract In 2006, Dixon et al. published the comprehensive review article entitled “Packed tubular reactor modeling and catalyst design using computational fluid dynamics.” More than one decade later, many researchers have contributed to novel insights, as well as a deeper understanding of the topic. Likewise, complexity has grown and new issues have arisen, for example, by coupling microkinetics with computational fluid dynamics (CFD). In this review article, the latest advances are summarized in the field of modeling fixed-bed reactors with particle-resolved CFD, i.e. a geometric resolution of every pellet in the bed. The current challenges of the detailed modeling are described, i.e. packing generation, meshing, and solving with an emphasis on coupling microkinetics with CFD. Applications of this detailed approach are discussed, i.e. fluid dynamics and pressure drop, dispersion, heat and mass transfer, as well as heterogeneous catalytic systems. Finally, conclusions and future prospects are presented.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3