Mixed matrix membranes for hydrocarbons separation and recovery: a critical review

Author:

Najari Sara1,Saeidi Samrand2,Gallucci Fausto3,Drioli Enrico4

Affiliation:

1. Department of Chemical Engineering , Tarbiat Modares University , Tehran 14115-114 , Iran

2. Department of Energy Engineering , Budapest University of Technology and Economics , Budapest , Hungary

3. Inorganic Membranes and Membrane Reactors, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry , Eindhoven , The Netherlands

4. Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy

Abstract

Abstract The separation and purification of light hydrocarbons are significant challenges in the petrochemical and chemical industries. Because of the growing demand for light hydrocarbons and the environmental and economic issues of traditional separation technologies, much effort has been devoted to developing highly efficient separation techniques. Accordingly, polymeric membranes have gained increasing attention because of their low costs and energy requirements compared with other technologies; however, their industrial exploitation is often hampered because of the trade-off between selectivity and permeability. In this regard, high-performance mixed matrix membranes (MMMs) are prepared by embedding various organic and/or inorganic fillers into polymeric materials. MMMs exhibit the advantageous and disadvantageous properties of both polymer and filler materials. In this review, the influence of filler on polymer chain packing and membrane sieving properties are discussed. Furthermore, the influential parameters affecting MMMs affinity toward hydrocarbons separation are addressed. Selection criteria for a suitable combination of polymer and filler are discussed. Moreover, the challenges arising from polymer/filler interactions are analyzed to allow for the successful implementation of this promising class of membranes.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3