The use of differential evolution algorithm for solving chemical engineering problems

Author:

Dragoi Elena NiculinaORCID,Curteanu Silvia

Abstract

AbstractDifferential evolution (DE), belonging to the evolutionary algorithm class, is a simple and powerful optimizer with great potential for solving different types of synthetic and real-life problems. Optimization is an important aspect in the chemical engineering area, especially when striving to obtain the best results with a minimum of consumed resources and a minimum of additional by-products. From the optimization point of view, DE seems to be an attractive approach for many researchers who are trying to improve existing systems or to design new ones. In this context, here, a review of the most important approaches applying different versions of DE (simple, modified, or hybridized) for solving specific chemical engineering problems is realized. Based on the idea that optimization can be performed at different levels, two distinct cases were considered – process and model optimization. In both cases, there are a multitude of problems solved, from different points of view and with various parameters, this large area of successful applications indicating the flexibility and performance of DE.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference316 articles.

1. Integrated differential evolution for global optimization and its performance for modeling vapor - liquid equilibrium data;Zhang;Ind Eng Chem Res,2011

2. Differential evolution practical approach to global optimization;Price,2005

3. Safe Model reduction and optimization of a reactive dividing wall batch distillation column inspired by response surface methodology and differential evolution;Khazraee;Math Comput Modell Dynam Syst,2013

4. Brest Constrained real - parameter optimization with e - self - adaptive differential evolution In editor Constraint - handling in evolutionary optimization Berlin Heidelberg;Mezura,2009

5. Utilizing differential evolution technique to optimize operating conditions of an integrated thermally coupled direct DME synthesis reactor;Vakili;Chem Eng J,2011

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3