Recent advances in low-temperature electrochemical conversion of carbon dioxide

Author:

Hussin Farihahusnah1,Aroua Mohamed Kheireddine12

Affiliation:

1. Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Science and Technology , Sunway University , No. 5 Jalan Universiti , Bandar Sunway , 47500, Petaling Jaya, Selangor , Malaysia

2. Department of Engineering , Lancaster University , Lancaster , LA1 4YW , UK

Abstract

Abstract Since the onset of the industrial revolution, fossil fuels have been the primary source of energy generation, and the continued exploitation of fossil fuels has led to an increase in the amount of atmospheric carbon dioxide. A lot of research currently focuses much on decreasing dependence on fossil fuels by replacing them with green energy. However, this technique poses a number of challenges, such as the need for improved infrastructure and technology and the high market penetration of renewable energy technologies. Capturing and converting carbon dioxide using electrochemical approaches can help to stabilize atmospheric greenhouse gas levels and create a positive future for the transformation of carbon dioxide into a number of value-added products. The conversion of carbon dioxide via electrochemical approach is a major challenge, and consideration must be given to the development and production of low-cost, stable, and highly efficient electrocatalysts. Hence, this review presents an overview of the current developments in the electrochemical conversion of carbon dioxide. In addition, this study discusses the current progress of electrocatalysts, in particular, the homogeneous and heterogeneous catalyst, which has a high level of activity and selectivity of low overpotential preferred products. The overview of the mechanisms and kinetics of the carbon dioxide reduction using the computational method are also addressed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3