Affiliation:
1. Department of Mechanical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia , e-mail:
Abstract
Abstract
Fouling is the accumulation of unwanted materials on surfaces that causes detrimental effects on its function. The accumulated materials can be composed of living organisms (biofouling), nonliving substances (inorganic and/or organic), or a combination of both of them. Mineral fouling occurs when a process uses cooling water supersaturated with mineral salt crystals (i.e. hard water). Precipitation ensues on heat transfer surfaces whenever the inversely soluble dissolved calcium salt ions are exposed to high temperature. Mineral salts, dirt, waxes, biofilms, whey proteins, etc. are common deposits on the heat exchanger surfaces, and they create thermal resistance and increase pressure drop and maintenance costs of plants. Fouling of dissolved salts and its mitigation have been studied in detail by varying process parameters, surface materials, coatings on surfaces, additives, etc. by many researchers. In the present stage, researchers have considered polymeric additives, environmental friendly nanoparticles, natural fibers, and thermal conductive coatings (metallic and polymeric) in the study of mitigation of fouling. A better understanding of the problem and the mechanisms that lead to the accumulation of deposits on surfaces will provide opportunities to reduce or even eliminate the problem in certain situations. The present review study has focused on fouling phenomena, environment of fouling, heat exchanger fouling in design, and mitigation of fouling. The findings could support in developing the improved heat exchanger material surfaces, retain efficiency of the heat exchangers, and prolong their continuous operation.
Subject
General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献