A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation

Author:

Alaba Peter Adeniyi1ORCID,Lee Ching Shya12,Abnisa Faisal3,Aroua Mohamed Kheireddine45,Cognet Patrick2,Pérès Yolande2,Wan Daud Wan Mohd Ashri1

Affiliation:

1. Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia

2. UMR5503 Laboratoire de Génie Chimique (LGC) , Toulouse , France

3. Department of Chemical Engineering , King Abdulaziz University , Rabigh 21911 , Saudi Arabia

4. Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Science and Technology , Sunway University , Bandar Sunway 47500 , Malaysia

5. Department of Engineering , Lancaster University , Lancaster, LA1 4YW , UK

Abstract

Abstract Glycerol electrooxidation has attracted immense attention due to the economic advantage it could add to biodiesel production. One of the significant challenges for the industrial development of glycerol electrooxidation process is the search for a suitable electrocatalyst that is sustainable, cost effective, and tolerant to carbonaceous species, results in high performance, and is capable of replacing the conventional Pt/C catalyst. We review suitable, sustainable, and inexpensive alternative electrocatalysts with enhanced activity, selectivity, and durability, ensuring the economic viability of the glycerol electrooxidation process. The alternatives discussed here include Pd-based, Au-based, Ni-based, and Ag-based catalysts, as well as the combination of two or three of these metals. Also discussed here are the prospective materials that are yet to be explored for glycerol oxidation but are reported to be bifunctional (being capable of both anodic and cathodic reaction). These include heteroatom-doped metal-free electrocatalysts, which are carbon materials doped with one or two heteroatoms (N, B, S, P, F, I, Br, Cl), and heteroatom-doped nonprecious transition metals. Rational design of these materials can produce electrocatalysts with activity comparable to that of Pt/C catalysts. The takeaway from this review is that it provides an insight into further study and engineering applications on the efficient and cost-effective conversion of glycerol to value-added chemicals.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3