Cyclone pressure drop reduction and its effect on gas–particle separation capability: principle, performance, and assessment

Author:

Zhao Bingtao1,Qian Weifeng1,Li Huimei1,Su Yaxin2

Affiliation:

1. School of Energy and Power Engineering , University of Shanghai for Science and Technology , 516 Jungong Road , Shanghai 200093 , China

2. School of Environmental Science and Engineering , Donghua University , 2999 North Renmin Road , Shanghai 201620 , China

Abstract

Abstract Cyclone separators have been widely used for gas–particle separation in chemical engineering. However, their enhancement in separation performances usually increases the pressure drop, which inevitably leads to an increase in operating energy consumption. One of the challenging issues is how to reduce the cyclone pressure drop while improving separation performances. To gain insight into the pathways and impacts of cyclone pressure drop reduction, this work reviews the state-of-the-art technical principles, performances and effects, focusing on the processes, mechanisms, and characteristics of pressure drop reduction by inlet/outlet variations, additional auxiliary devices, local cyclone dimension improvement, and global optimization based on intelligent algorithms. The cyclone performances are assessed using a proposed index that combines the Euler number and the square-root particle cut-off Stokes number. It is suggested that the pressure drop and separation capability usually have a dynamic compromise. Considering the comprehensive performances, the technology using helical roof inlet, cross cone, increasing cylindrical height with h/D = 4.3 (H/D = 6.35), and globally optimized design by Sun et al. (2017) are respectively considered to the others. Particularly, the last one is recommended to be more representative in practice. Finally, the key issues to be considered in further research were also prospected.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3