Vertical and lateral soil moisture patterns on a Mediterranean karst hillslope

Author:

Canton Yolanda1,Rodríguez-Caballero Emilio12,Contreras Sergio3,Villagarcia Luis4,Li Xiao-Yan5,Solé-Benet Alberto6,Domingo Francisco6

Affiliation:

1. Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano S/N, 04120 Almería, Spain

2. Max Planck Institute for Chemistry, Multiphase Chemistry Department, Multiphase Chemistry, Mainz, Hahn-Meitner-Weg 1, 55128 Mainz, Germany. Tel.: +49-(0)6131-305-6502

3. FutureWater, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain

4. Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo Olavide, Sevilla, Spain

5. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China

6. Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada de San Urbano S/N, 04120 Almería, Spain

Abstract

Abstract The need for a better understanding of factors controlling the variability of soil water content (θ) in space and time to adequately predict the movement of water in the soil and in the interphase soil-atmosphere is widely recognised. In this paper, we analyse how soil properties, surface cover and topography influence soil moisture (θ) over karstic lithology in a sub-humid Mediterranean mountain environment. For this analysis we have used 17 months of θ measurements with a high temporal resolution from different positions on a hillslope at the main recharge area of the Campo de Dalías aquifer, in Sierra de Gádor (Almería, SE Spain). Soil properties and surface cover vary depending on the position at the hillslope, and this variability has an important effect on θ. The higher clay content towards the lower position of the hillslope explains the increase of θ downslope at the subsurface horizon throughout the entire period studied. In the surface horizon (0-0.1 m), θ patterns coincide with those found at the subsurface horizon (0.1-0.35 m) during dry periods when the main control is also exerted by the higher percentage of clay that increases downslope and limits water depletion through evaporation. However, in wet periods, the wettest regime is found in the surface horizon at the upper position of the hillslope where plant cover, soil organic matter content, available water, unsaturated hydraulic conductivity (Kunsat) and infiltration rates are higher than in the lower positions. The presence of rock outcrops upslope the θ sampling area, acts as runoff sources, and subsurface flow generation between surface and subsurface horizons also may increase the differences between the upper and the lower positions of the hillslope during wet periods. Both rock and soil cracks and fissures act disconnecting surface water fluxes and reducing run-on to the lower position of the hillslope and thus they affect θ pattern as well as groundwater recharge. Understanding how terrain attributes, ground cover and soil factors interact for controlling θ pattern on karst hillslope is crucial to understand water fluxes in the vadose zone and dominant percolation mechanisms which also contribute to estimate groundwater recharge rates. Therefore, understanding of soil moisture dynamics provides very valuable information for designing rational strategies for the use and management of water resources, which is especially urgent in regions where groundwater supports human consume or key economic activities.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3