Nonlinear PTO Effect on Performance of Vertical Axisymmetric Wave Energy Converter Using Semi-Analytical Method

Author:

Liu Ming1,Liu Hengxu2,Zheng Xiongbo3,Chen Hailong2,Wang Liquan1,Zhang Liang2

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin , China

2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin , China

3. Collge of Science, Harbin Engineering University, Harbin , China

Abstract

Abstract The wave energy, as a clean and non-pollution renewable energy sources, has become a hot research topic at home and abroad and is likely to become a new industry in the future. In this article, to effectively extract and maximize the energy from ocean waves, a vertical axisymmetric wave energy converter (WEC) was presented according to investigating of the advantages and disadvantages of the current WEC. The linear and quadratic equations in frequency-domain for the reactive controlled single-point converter property under regular waves condition are proposed for an efficient power take-off (PTO). A method of damping coefficients, theoretical added mass and exciting force are calculated with the analytical method which is in use of the series expansion of eigen functions. The loads of optimal reactive and resistive, the amplitudes of corresponding oscillation, and the width ratios of energy capture are determined approximately and discussed in numerical results.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Reference26 articles.

1. 1. Tanaka H. Sea Trial of a Heaving Body Wave Power Absorber. Transactions of the Japan Society of Mechanical Engineers B, 1984, 50:2325-2333.

2. 2. Budal K, Falnes J, Iversen LC, Lillebekken PM, Oltedal G, Hals. The Norwegian wave-power buoy project . In: Berge H, editor. Proceedings of 2nd International Symposium on Wave Energy Utilization, Trondheim, Norway; 1982, p.323-344.

3. 3. Prado M. Archimedes wave swing (AWS) . In: Cruz J, editor. Ocean Wave Energy. Berlin: Springer, 2008. p. 297-304.

4. 4. Elwood D, Schacher A, Rhinefrank K, Prudell J, Yim S, Amon E. Numerical modelling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off . In: Proceedings of 28th International Conference on Ocean Offshore Arctic Engineering, ASME, Honolulu, Hawaii, 2009, No.OMAE2009-79146.

5. 5. L. Cameron, R. Doherty. Design of the Next Generation of the Oyster Wave Energy Converter. 3th International Conference on Ocean Energy, Bilbao, 2010: 1-12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3