Viscosity prediction of hydrocarbon binary mixture using an artificial neural network-group contribution method

Author:

Nanvakenari Sara1,Ghasemi Mitra1,Movagharnejad Kamyar1ORCID

Affiliation:

1. Faculty of Chemical Engineering , Babol Noshirvani University of Technology , Babol , Mazandaran , Iran

Abstract

Abstract In this study, the viscosity of hydrocarbon binary mixtures has been predicted with an artificial neural network and a group contribution method (ANN-GCM) by utilizing various training algorithm including Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM), Resilient back Propagation (RP), and Gradient Descent with variable learning rate back propagation (GDX). Moreover, different transfer functions such as Tan-sigmoid (tansig), Log-sigmoid (logsig), and purelin were investigated in hidden and output layer and their effects on network precision were estimated. Accordingly, 796 experimental data points of viscosity of hydrocarbon binary mixture were collected from the literature for a wide range of operating parameters. The temperature, pressure, mole fraction, molecular weight, and structural group of the system were selected as the independent input parameters. The statistical analysis results with R 2 = 0.99 revealed a small value for Average absolute relative deviation (AARD) of 1.288 and Mean square error (MSE) of 0.001018 by comparing the ANN predicted data with experimental data. Neural network configuration was also optimized. Based on the results, the network with one hidden layer and 27 neurons with the Levenberg-Marquardt training algorithm and tansig transfer function for hidden layer along with purelin transfer function for output layer constituted the best network structure. Further, the weights and bias were optimized to minimize the error. Then, the obtained results of the present study were compared with the data from some previous methods. The results suggested that this work can predict the viscosity of hydrocarbon binary mixture with better AARD. In general, the results indicated that combining ANN and GCM model is capable to predict the viscosity of hydrocarbon binary mixtures with a good accuracy.

Funder

Babol Noshirvani University of Technology

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3