Design of a new synthetic nanocatalyst resulting high fuel quality based on multiple supports: experimental investigation and modeling

Author:

Jarullah Aysar T.1,Ahmed Mustafa A.1,Al-Tabbakh Ban A.2,Mujtaba Iqbal M.3

Affiliation:

1. Chemical Engineering Department , College of Engineering, Tikrit University , Tikrit , Iraq

2. Petroleum Research & Development Center, The Iraqi Ministry of Oil , Baghdad , Iraq

3. Chemical Engineering Department , Faculty of Engineering & Informatics, University of Bradford , Bradford BD7 1DP , UK

Abstract

Abstract In order to meet the environmental legislations related to sulfur content, it is important to find an alternative techniques for deep removal of sulfur components from fuels. So, in this study, a novel nano-catalyst based on iron oxide (Fe2O3) as active component prepared over composite support (γ-Alumina + HY-zeolite) is developed here for efficient removal of sulfur compounds from fuel via oxidation process. The precipitation method is employed first to prepare the composite support and then the impregnation method is utilized to generate a novel synthetic homemade (Fe2O3/composite support) nanocatalysts that has not been developed in the literature (iron oxide over composite support). The characterizations of the prepared catalysts display that the surface area of the catalyst increases with increasing the amount of Y-zeolite in composite support. The effectiveness of the catalysts is tested by utilizing oxidative desulfurization (ODS) operation under several operating conditions. The results of the experimental work show that the activity of oxidative desulfurization enhances with increasing Y-zeolite, temperature, and batch time under moderate operating conditions. The oxidative desulfurization efficiency followed the order: CAT-1 < CAT-2 < CAT-3. The CAT-3 performed the high removal of sulfur compounds (90.73%) at 100 min and 423 K. The best values of the kinetic parameters of the ODS process are then determined based on experimental data and model based techniques within gPROMS package. Finally, the reactor model is used to determine the optimal operating conditions while maximizing the removal of sulfur compounds leading to cleaner fuel. Where, 99.3% of the sulfur removal has achieved at batch time of 190.6 min, temperature of 543.56 K and initial sulfur content at 0.8668 wt% in the presence of CAT-3 based on the optimal kinetic parameters (order of reaction (n) of 1.9865719, activation energy (EA) at 29.942 kJ/mol and pre-exponential factor (k 0) with 622.926 wt−0.9865719 min−1).

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3