Design strategies for oxy-combustion power plant captured CO2 purification

Author:

Okeke Ikenna J.12,Ghantous Tia2,Adams Thomas A.2

Affiliation:

1. Department of Civil and Mineral Engineering , University of Toronto , 35 St. George Street , M5S 1A4 , Toronto , ON , Canada

2. Department of Chemical Engineering , McMaster University , 1280 Main St. W , L8S 4L7 , Hamilton , ON , Canada

Abstract

Abstract This study presents a novel design and techno-economic analysis of processes for the purification of captured CO2 from the flue gas of an oxy-combustion power plant fueled by petroleum coke. Four candidate process designs were analyzed in terms of GHG emissions, thermal efficiency, pipeline CO2 purity, CO2 capture rate, levelized costs of electricity, and cost of CO2 avoided. The candidates were a classic process with flue-gas water removal via condensation, flue-gas water removal via condensation followed by flue-gas oxygen removal through cryogenic distillation, flue-gas water removal followed by catalytic conversion of oxygen in the flue gas to water via reaction with hydrogen, and oxy-combustion in a slightly oxygen-deprived environment with flue-gas water removal and no need for flue gas oxygen removal. The former two were studied in prior works and the latter two concepts are new to this work. The eco-technoeconomic analysis results indicated trade-offs between the four options in terms of cost, efficiency, lifecycle greenhouse gas emissions, costs of CO2 avoided, technical readiness, and captured CO2 quality. The slightly oxygen-deprived process has the lowest costs of CO2 avoided, but requires tolerance of a small amount of H2, CO, and light hydrocarbons in the captured CO2 which may or may not be feasible depending on the CO2 end use. If infeasible, the catalytic de-oxygenation process is the next best choice. Overall, this work is the first study to perform eco-technoeconomic analyses of different techniques for O2 removal from CO2 captured from an oxy-combustion power plant.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3