Dynamic behavior of CO2 adsorption from CH4 mixture in a packed bed of SAPO-34 by CFD-based modeling

Author:

Hoghooghi Bonyad Ahmad1,Fatemi Shohreh1,Mansourpour Zahra1

Affiliation:

1. School of Chemical Engineering, College of Engineering, University of Tehran , P.O. Box 11155/4563 , Tehran , Iran

Abstract

Abstract In this work, a dynamic non-isothermal adsorption process of CH4 and CO2 in a fixed bed of SAPO-34 particles was modeled by coupled DEM-CFD. This Euler–Lagrange method gives access to specification of each adsorbent pellet including location, temperature and concentrations, and facilitates study of phenomena like adsorption. Transport phenomena including heat and mass transfer in fluid and between solid and gas were taken into account. Eventually the model was validated by experimental results of breakthrough curve. Especially near wall channeling effect and the role of inlet feed velocity on the bed efficiency were addressed in this work. Local and bulk porosity values calculated using DEM model showed an acceptable agreement with previous empirical equations. Results indicated that this coupled method can be applied as a promising tool to study the mass transfer zone and efficiency of the adsorption process. The results revealed that as the feed continues to flow into the column, the lower layers of the adsorbent particles become practically saturated and then the mass transfer zone starts moving upward to a region of fresher adsorbent in the column. Also, the results showed that, at a low inlet velocity with a low Peclet number (Pe = 0.195), channeling effect is reduced and the diffusion mechanism controls the mass transfer. However, HETP enhances with increase in the feed gas velocity (Pe = 2.25) as well as increase in deviation from plug flow regime, and consequently the adsorption efficiency decreases. HETP decreases drastically at the beginning with increase in interstitial velocity. Increase in the interstitial velocity beyond a particular value of 0.5 cm s−1 leads to increase in the HETP value. This trend and presence of a minimum in this graph were explained based on Van Deemter concept.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3